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ABSTRACT. For most applications in the control area, the 
standard practice is to approximate a nonlinear mathematical 
model by a linear system. Since the feedback linearizable 
systems contain linear systems as a subclass, we examine the 
procedure of approximating a nonlinear system by a feedback 
linearizable one. Because many physical plants (e.g. air- 
craft at the NASA Ames Research Center) have mathematical 
models which are "close" to feedback linearizable systems, 
such approximations are certainly justified. We introduce 
results and techniques for measuring the "gap" between the 
model and its "truncated linearizable part." The topic of 
pure feedback systems is important in our study. 

I. INTRODUCTION. In control design for nonlinear systems, 
the most common method is to approximate the nonlinear 
system by a linear system using the Taylor series trunca- 
tion. Thus, we approximate a nonlinear system by a linear 
one and design with respect to the linear system. Recent 
advances have shown that control design can be achieved 
using a much larger class (containing the linear ones) of 
systems, which are called "feedback linearizable." These 
are nonlinear systems which are feedback equivalent to 
controllable linear systems 113, 121, [31. 
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Concerning applications, the feedback linearization 
approximation for totally automatic flight control is used 
in 141 and [ 5 1 .  In IS1 the particular case of the WE-1H 
helicopter is studied, and successful flight test results 
are discussed in [ 6 1 .  

The first author and R. Su I71 have examined the pro- 
cedure of approximating a general nonlinear system with a 
feedback linearizable one by introducing the concept of a 
pure feedback system. Every pure feedback system is feed- 
back linearizable, and for each feedback linearizable system 
there exists a state space coordinate system in which it is 
pure feedback (assuming generic controllability assump- 
tions). These coordinates are called the s-coordinates and 
they are generated geometrically (see also 111 and [E]). 

is feedback equivalent to a linear system or not. If 
approximation is necessary, the "pure feedback part" is 
easily recognizable. 

(1) 
with analytic vector fields f,gl, . . . , g  

open set in Rn containing the origin), s = * dt' and u1,u2' 
..., u as controls. In general, the Taylor series approxi- 
matiog of a single input system, m=l (we shall analyze 

_ _ _  Tn the s-coordinates ~n can qnick:y aacertail-, if the system 

Suppose we take a nonlinear system in its s-coordinates 
?I s = f Is) + i$l u.q. ( s )  

1-1 
on 1R" (or say an 

m. 

multi-input also), has error O((sl,s2, ..., sn) 2 ) 

feedback approximation has error O((s3,s 4 , . . . , s  ) 2 ) .  

pure feedback approximat.ion error is O ( ( s  3 , s 4 , .  . . ,Sn+) 2), 

in terms 
2 of vector field differences. 

no linear terms in these variables. However, the pure 

over, if g,[f,gl, ..., (ad f,g) are involutive, O~k5n-3, the 

By O((sl,s2, ..., sn) ) we mean 

More- 
k 

and the vector fields in the orir~inal system and the pure 
feedback part aqrae when s, = 0 .  s ,  = 0 ,  ..., s ~ - ~  = 0. If 
k = n-2, the systen is pure  feedback, ana :io approximation 
is necessary. 

In approximatinq d n o n l i n e a r  system by its pure feed- 
back part, it is of interest to compare the state time 
responses of the system and its approximation. For this 
purpose we propose the Volterra series expansion of fliess, 
Lamnabhi, and Lamnabhi-Laqarrigue [ 9 ] .  

An interestinq class of partial differential equations 
consists of those failing to be elliptic, but possessing 
many desirable properties of elliptic equations. We con- 
sider the possibility of introducing the s-coordinates to 
find interesting coordinates for those hypoelliptic opera- 
tors studied in [ I01  and [lij. 

tion Conference, we are presenting an overview of recent 
work and obr thoughts and ideas about interesting problems 
and future directions. This concept is certainly reflected 
i.n the style and intent gf this paper. 

" 

In keeping with t h e  purpose of this Engineering founda- 

Sections If and 111 contain definitions, results, and 
examples concerning pure feedback approximation for the 
single input and multi-input systems, respectively. A 
discussion of geometrically generated coordinates for the 
study of partial differential equations is the topic of 
Section IV. Future research directions are mentioned in 
the final section. 

11. SINGLE INPUT SYSTEMS. We begin with a single input 
system 

where f and g a e real analytic vector fields on some open, 
( 2 )  ir = f(x) + ug(x), 

set in R" conta 
Definiticn 2.1. 

1 1  

2 1  

R1 = f (x 

i2  = f (x 

(3) 

ning the origin. 
h system cf the fcrm 

x2) 
X2'X3) 

j , =  n-l fn-1 (X1'X2, - - - 'Xn) 
2 

Let [f,gl, (ad2f,g) = If,[f,gll ,..., (adkf,g) = 

= fn(x1,x2 I . . . ,  Xn) + uqn(x1,x2 , . . . I  Xn) 3 B  
is called a pure feedback system. 

[f, (adk-':,g) 1 denote Lie brackets involving the vector 
fields f and g. By Lfy we mean the Lie derivative of a 
function y with respect to f; i.e. L f y = <dy,f>, < I , . >  

denoting the duality between one forms and gradients. We 
assume for the remainder of this section that g,[f,g],-.., 
(adn-'f ,g)  are linearly independent. 

space coordinates y1,y2, . . . ,y 
for a pure feedback system ( 3 )  we define new state 

and a cew COntZOl ': by 

Yl = 

( 4 )  

v = LfYn + UL y 
Ll n' 

We obtain the controllable linear system 
$l = Y2 

Y2 = Y3 
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gn = v. 
Hence system ( 3 )  is feedback linearizable or is feedback 
equivalent to the controllable linear system ( 5 ) .  In 
general, for a feedback transformation we include non- 
singular state space coordinate changes (e.g. y1,y2,-..,yn), 
additive state feedback (e.g. Lfyn), and nonsingular state 
dependent input space coordinate changes (e.g. uL y ) .  

exampies should be helpful. 
In moving toward general results, the followlnq s n  two 

Example 2.2. On R3 the system 
2 
3 k1 = x2 + x 

( 6 )  f, = x3 + x; 
ic3 = xf + u 

is not a pure feedback system. Moreover, there is no 
coordiiiate s stem on IR3 in which this system appears as a 
pure feedbacl system. 

The usual Taylor series approximation about OcR3 is 

x2 k1 = 

( 7 )  ic2 = x3 

j ,  = a  
3 ,  

and the errcr between the vector fields in ( 6 )  and ( 7 )  is 

O (  (x,) , (x,) , (x3I2 ) .  Approximation hy a pure feedback 
syster 

( 8 )  

2 2 

icl  = x; 

k3 = x1 + u 

2 2  = x3 + X i  2 

2 

yields an error difference in systems ( 6 )  and ( 8 )  of 
O (  (x,I2 ) .  

exact when x3 = 0. 
Example 2.3. The system 

Moreover, the approximation of ( 6 )  by ( 8 )  is 

2 2  c1 = x2 t x2 + x3 + u 

(9) k2 = x3 sin (xi-x3) 

on R3 is not a p u r e  feedback systs. 
2 ' x - + L l  

3 3  
Ilcwever, it is siluwn 

APPLJCNIONS OF N O N U N C U  SYWWS THeORY 2u 

in [61 that near the origin there exists state space 
coordinates in which we do have a pure feedback system. 

Hence a pure feedback system is not invariant under 
coordinate changes on state space. Those nonlinear systOlnt3 
that can be reduced to pure feedback form can be classified, 
and, in fact, are the feedback linearizable systems. 

Given a general nonlinear system 
( 2 )  ic = ffx) + ug(x )  

with gl [f ,gl I . .  . , (adn-'f ,g) linearly independent, we shall 
find a coordinate system (called the s coordinates) so that 

i) if the system can be put in pure feedback fonn, it 
appears in this coordinate system, 
if the system cannot be put in pure feedback form, 
we approximate it by that part of the system in 
the s coordinates appearing in the form ( 3 ) .  

ii) 

For every system ( 2 )  we have s coordinates and we can 
expand in a power series in these coordinates. 
Definition 2 . 4 .  The pure feedback part of a nonlinear 
system is that part in the s coordinates which appears in ._ 
the form ( 3 ) .  - 
in order the following systems of ordinary differential 
equations with the indicated initial conditions. 

We introduce the following coordinate system. Solve 

- -  
ax = (adn-'f,g) , x(0) = 0 
dsl 

w v  
cdn 

= (adn-2f,g) , x(sl,O) = x(sl) 
ds2 

L ;  ._ 

dx - - ! f , g l ,  X(Sl,S2 I . . . ,  sn-2,0! = - 
dsn- 1 

By the inverse function theorem we invert (locally) to find 

(11) 

sn (xl ,x2 I . .  . ,xn) . 
We set 

x 1 = (adn-lf,g) 
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X2  = (adn-'f,g) 

x n = 9 ,  and d e f i n e  

(13)  
so = ( o e d i  

Sk = is = (sl,s2,. . . , sn )  Rn: s 

f o r  k = 1 . 2 .  ..., n. 
I n  t h e  s c o o r d i n a t e s ,  u s u a l  d e r i v a t i v e s  can be re- 

= 0, k + 1 i m i n }  m 

p l a c e d  by d e r i v a t i v e s  w i t h  r e s p e c t  t o  t h e  X , , j  = 1 . 2 ,  ..., n 
Sn-2, i.e. when s ~ - ~  and sn = 0. 

1 W e  c o n t i n u e  t h i s  p r o c e s s  w i t h  ( a d  X n - 2 f )  

. F o r  example,  i n  t h e  l a s t  s t e p  

^ I C  

J .- 
Theorem 2 . 5 1 7 1 .  I n  terms of t h e  s c o o r d i n a t e s  t h e  system 
( 2 )  assumes t h e  form -$ 

n ( S . ) l  

denotes  r e s t r i c t i o n  t o  Sj-i 

(14)  Q = f ( 0 )  + iIl jL l  -&-- ( a d i X . , f )  
3 

I 'i-1 
where 

I J -  

v e c t o r  whose only  nonzero e n t r y  i s  a 1 i n  t h e  nth component. 
I t  

system ( 1 4 ) .  
For  a d e f i n i t i o n  of  an i n v o l u t i v e  s e t  of v e c t o r  f i e l d s  

and a s t a t e m e n t  of t h e  Frobenius  Theorem w e  r e f e r  t h e  r e a d e r  
t o  [21. 
Theorem 2 . 6 .  I f  g ,  [ f , g l ,  ..., (ad f , g )  a r e  i n v o l u t i v e ,  k an  
i n t e g e r ,  Oikin-3, then  t h e  v e c t o r  f i e l d  d i f f e r e n c e  between 
system ( 1 4 )  and i t s  pure  feedback p a r t  is  

O( (s3,s4 ,..., s ) 2 ) .  
feedback system. 
Proof .  
subspaces  of Rn.  

% is  very easy  t o  recognize  t h e  pure feedback p a r t  of <. 

k 

I f  k = n-2, then ( 1 4 )  i s  a pure  n-k 

I n  t h e  s c o o r d i n a t e s ,  t h e  manifolds  Sk a r e  l i n e a r  
Moreover, on each Sk t h e  v e c t o r  f i e l d  X k 

L e t t i n g  

f =  

w e  f i n d  t h a t  

l o !  

afn-2 must v a n i s h  on Sn-l, i .e. when Hence - I- , . . . I  a f i  a f 2  
ae,, as, asn -_ -_ _ _  

sn = 0. 
f l # f 2 '  ... I fn-2 i n  t h e  expansion ( 1 4 )  is two. 

The lowest power of sn t h a t  c a n  appear  i n  

Computing w e  f i n d  t h a t  (adlXn-,,f) 

,e.., 

'n-3 

d=l  

a s3 
, implying t h a t  - m u s t  v a n i s h  on 

s 4  = ... = s = 0. S2,  i .e.  when s3  = 

Thus it i s  c l e a r  t h a t  t h e  v e c t o r  f i e l d  e r r o r  d i f f e r -  
ence  between sys tem ( 1 4 )  and its pure  feedback p a r t  i s  a t  

w o r s t  O( ( s 3 , s  4 , . . . , ~ n )  ) .  

set t g ,  [ f , g l , .  .., 

2 

W e  now t u r n  o u r  a t t e n t i o n  t o  t h e  assumption t h a t  t h e  

From Lemma 4 of [ 7 1  w e  have t h a t  
( a d k f , g ) )  i s  i n v o l u t i v e .  

L'J 
where * d e n o t e s  p o s s i b l e  nonzero e n t r L r 5 .  Xow r 81 

= [ f , g ]  i m p l i e s  f l , f 2 ,  ..., f n - 2  are 

xn-l = 1 i] independent  of sn, 

on W" , 

n '  independent  of s and s n-1 
"J 
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fn-(k+l) are 

n-k+l ' ' n' independent of s I s  

Hence the error between system (14) and its pure feed- 
If k = n-2, we back part is clearly O( (S~,S~,...,S~-~) 2 ) .  

have a pure feedback system for (14)- n 
pare the time responses of the state evolutions of system 
(14) and its pure feedback part. Given an initial condition 
so in the s coordinates and an input u we examine the 
difference between these time responses by applying a formal 
Volterra series expansion. 

s coordinates (i.e. x = s ) .  To 

we add a real analytic output function y = h(x) and obtain 
the single input, single output system 

(15)  

Volterra series expansion of the system (15 )  is 

It is very important that a method be devised to com- 

We begin with system (2) and assume that we are in the 

(2) 1 = f(x) + ug(x) 

2 = f(x) + ug(x) 
y = h(x!. 

By the formula of Fliess et.al. I91 the formal 

( 1 6 )  

U. 
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+..., 
where xoERn is a point at which the system is defined. 

Our recommended method proceeds as follows: Take in 
order the outputs h = xl, h = x 2 ,  ..., h = xn, compute the 
Volterra series expansions for the system (15) and the 
system 

ic = i(x) + ug(x) 

given by the pure feedback part, and compare the results 
for corresponding state time responses. 

of Theorem 2.6 on the Volterra series (again taking x = s ) .  
From the proof ot that result and the successive applica- 
tion of the formula 

We examine the effect of the involutivity assumptions 

Lf<dh,g> = <dL,h,g> + <dh,[f,gI;' 
= L q f  L h + <dh,if,gl> 

we find that 

( 1 8 )  

L x  g k+l 
For any initial condition x.. and with h = x,, h = x-,..., 
=  in turn, the terms ix the expansion ;16) cor:esponG 
ing to the Lie derivatives in (18) must vanish. 

it is feedback linearizable. This implies the set 
{ g ,  [f,gl , . . . , (adn-2f ,g) i is involutive (see [i21 dnd i21) 
and 

Since the dynamical equation in (17) is pure feedback, 

L LUX ~ 3 ,  0>"-n-2 

L X  g n-1 O .  

n-1 As before, given a point xo and h = xl, h = x2,.-.,h = x 
in turn, the terms in the expansion (16) (with f replaced 
by f) corresponding to the Lie derivatives in (19) must 
vanish. 

illustrate the importance of the involutivity assumptions 
in improving the errors in the corresponding Volterra 
series expansion dlfferences for (15) and (17). Again, the 
outputs are taker successively to be h = xl, h = i( 

h - x  

The conditions in equation (19) common to those in (18) 

2""' 
n' 
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111. MULTI-INPUT SYSTEMS. W e  c o n s i d e r  t h e  n o n l i n e a r  system 

w i t h  f ,gl,.  . . ,gm be ing  r e a i % a l y t i c  vector f i e l d s  on some 
open set i n  Rn c o n t a i n i n g  t h e  o r i g i n ,  and g1,g2,. . . ,gm 
b e i n g  l i n e a r l y  independent .  Assume t h e r e  e x i s t s  a set  of 
p o s i t i v e  i n t e g e r s  K ~ , R . ~ ,  ..., K 

m (20) ic = f ( x )  + 2 uigi(x) 

such t h a t :  

1 1 Y -1 m 

i) t h e  set C = is,, ( a d  f , g l ) ,  .. ., (ad 

g 2 , ( a d  f , g 2 ) , . . . I  ( a d  f , g 2 ) .  ..., gm, (ad f,gm) ,..., 
( ad  f , g m )  i spans  R" on o u r  open set  c o n t a i n i n g  
Omn, 
t h e  span  o f  C . k  = t h e  span of Cj,) = 1 , 2 ,  ..., m, 

whcre C = :gl ,..., ( ad  f , g l ) , y 2  ,..., ( ad  f I g 2 )  

, . . . , qm, . . -, ( ad  ' f,g,) i ,  
m 

f , g l ) ,  

1 K -1 1 

K -1 

ii) 
K .-2 K .-2 3 

3 ;< 2 

1~ iii) K > K  2 ... (renumber q1,g2,. . . ,qm i f  1- 2 
n e c e s s a r y ) .  

We f i l l  a lvlxm a r r a y  by p u t t i n g  from t o p  t o  bot tom 

1) q l , [ f , g l l  ,..., ( a d w l - ~ , g l )  i n  t h e  f i r s t  column 

2 )  g 2 , [ f , g 2 1  ,..., (ad'2-:,q2) and 0 ' s  ( i f  needed) 
i n  t h e  second column 

. -1 m 
m) g m , i f , q m l  ,... ,(ad f,g,) and 0 ' s  ( i f  needed) 

i n  t h e  ?!tl' zcllsnr:. 
~ ..1 

L e t  X, = (ad' f , g l i ,  :hc f n t r y  i n  t h e  ; a s t  LUW and f i r s t  
A c0:umn. 

X I  = t h e  v e c t o r  f i e l d  e n t i p  i n  t h e  i a s r  r o w  and 2nd 
column i f  i t  is  nonzero,  o r  t h e  v e c t o r  f i e l d  e n t r y  

i n  t h e  . l-lth r o w  m d  1st column i f  ( ad  f , g l )  i s  
t h e  o n l y  nonzer-6 ent.ry i n  t h e  l a s t  r o w .  

cl-l 

xn = 9, * 

Thus w e  s t a r t  a t  t h e  .. . th row and f i r s t  column and move 
f r o m  l e f t  t o  r i y h t  amc;.:g c h r  nonzerc e n t r i e s .  Encounter ing 
a z e r o ,  w e  move up on* r o w  znB r e t u r n  t? t h e  f i r s t  column. 

The s c o o r d i n a t e s  a r c  d e f i n e d  by so lv inq  i n  o r d e r  t h e  
sys t em of o . d . e . ' s  w i t h  i n i t i a l  c o n d i t i o n s  

(21) 

and  

dx 
G1 = x1 
dx - = x2 
ds2 

dx z = x n  
i n v g r t i n g  
s1 (xl # X 2  I 

, X(sl,s2, . . . ,sn-1,0) = X ( S l r s 2 r . - - r S n - l ) ,  

( l o c a l l y )  t o  o b t a i n  ..., X 

s 2 1 2  ( x  , x  I . . . , X n )  

sn (XI ,  x2 ,  . . . , X n )  

so = omn 

(22) 
. 

The man i fo lds  

(23) Sk = {s=(sl ,s  *,..., snj  XIn: 
a r e  e s s e n t i a l  i n  t h e  f o l l o w i n g  r e s u l t ,  which i s  a m u l t i -  
i n p u t  ana logue  t o  Theorem 2.5. 
Theorem 3 . 1 [ 7 ] .  In  terms of  t h e  s c o o r d i n a t e s ,  t h e  sys t em 
(20) assumes t h e  form 

s = 6 ,  k + i L i a n i  

S = f ( 0 )  + (adlX 

(24) 

n 
"k-n+m, I '  SI-? 

cc n ( s  1' 
+ k=n&+liek + 1 1  7 ] Z k + l  ' -(adiX3,Xk) 1. 

where e i s  a n  n v e c t o r  whose o n l y  nonzero e n t r y  i s  a 1 i n  
t h e  kthkcomponent . 
mul t i - inpu t  case Take  t h e  lxm a r r a y  t h a t  we c c n s t i u c t s d  

above. For i , k = l , ? , . .  
e l e m e n t s  i n  t h e  (cl-i+l! r 3 w  

W e  need a d e f i n i t i o n  of p u r e  f eedback  sys t em for t h e  

l e t  n = ilu&er - 5  nc?zerc 0 0  
- E ?  - 2  

k' 0 %  
For J = 2,3, ..., k l  set 76 3 

"thl 

0 L k  = n +n +...+ 7, 1 2  

r Y )  = (x1,x2, ..., x 

YK1 = (X1'X2 ,..., X n ) .  

R 1 1  = f ( y * ) ,  ; = l , 2 , . .  7 

1 b 
1 

Denote by g 

D e f i n i t i o n  3.2. The n o n l i n e a r  sys t em (20) is a p u r e  feed-  
back system i f  it is of t h e  form 

t h e  l th component o f  t h e  v e c t o r  f i e l d  9,. 
11 4 4 3  

*'-l 
2 = c  
) 

; - ~l+l,..-,s* 
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(25)  kj - fj(yK 1 ,  j - B,1-2+1 ,..., n-rn 
1 m  

1 1 
%j = fj(yK ) + iE1gij(~K )ui8 j-n-wl, ..., n. 

The block triangular systems found in [4] are a 

For a general nonlinear system (20)  (perhaps not pure 
particular subset of the pure feedback systems. 

feedback), we can move to the s coordinates as shown i n  
equations (24). 
Definition 3.3. The pure feedback part of a nonlinear 
system (20) is that part in the s coordinates which appears 
in the form (25). 

Without proof we give a multi-input version of-Theorem 
2.6. The sets C .  are defined in the assumptions following 3 
equation (20). 
Theorem 3.4. If each of the sets {gl, [f ,gll , . . . , (adkf ,gl), 
g2,[f,g21 -. . , (adkf,g2), gmr [f,gml ,. . . , (adkf ,gm) I and C are 
involutive, where k is an integer, Orkhcl-3, and j is any 
positive integer with ~.-2Lk, then the vector field 
difference between system (24) and its pure feedback part 

j 

3 

is O( (S~~+~,...,S~) 2 1 .  Here p is the largest subscript on 

a nonzero vector field Xi in the (k+lIth row of our K xm 

array. If k = K1-2, then (24) is a pure feedback system. 
We can compare the time state responses of the system 

(24) and its pure feedback part by using multi-input 
versions of the Volterra series expansions of [9]. 

1 

IV. PARTIAL DIFFERENTIAL EQUATIONS. Let L be a linear 
partial differential operator with real C" coefficients and. 
for simplicity, assume-L is second order. 
that the principal part of L is the sum of squares of 
vecto: fields on an open set containing che orisin innn. 

We also suppose ' 
~ 

We lct the prir,cipal part of L be f 2  + gi 2 +...+g,, 2 
where 

f = z ,  (x) 2- t J 2  (x) 2.- f . .  .+ \An(X) 
d 

* 7x1 ax- n 
a a 3 + B12(X) - +...+ Bln(X) - 

ax2 axn 

and the squares mean that an operator is applied twice. 

but we are interested in the case that f can vanish on 
certain sets and gl,g2, ...,gm are :inearly independent with 
m<n. We assume the existence of integers K ~ , ~ ~ , . . . K ~ ,  sets 
C, sad C. as in section izi. 
Definition 4.1% AD. operater L 1s said to be hypoelliptic 
if Lu = f, where f is Cm on an open set U of IR", implies 

In most studies the operator L is taken to be elliptic, 

7 

that u is Cm on U. 
By the results of Hormander [lo] (with extensions due 

to Rothachild and Stein [ll] we have that our operator L 
w i t h  principal part f +gl+...+ gm is hypoelliptic since the 
vector field8 in C are linearly independent. 

for our real analytic systems of ordinary differential 
equations are also applicable for C" systems. 
view our operator L in the s coordinates as generated in 
section 111. 

The relationship between controllability of systems of 
o.d.e.'s and hypoellipticity of p.d.e.'s has been well 
established in the literature. However, perhaps the 
special coordinates (e.g. the s coordinates) and the equi- 
valence results from o.d.e.'s have not been applied to 
yield nice coordinates and equivalence criteria for opera- 
tors like L. For example, the theory of Krener [El and 
Respondek [131 for state space equivalence of systems when 
applied to p.d.e.'s produces the following theorem in the 
m=l (with g=gl) case. 
Theorem 4.2. For the second order partial differential 
operator with principal part f2+g2 on IR", there exist a 
(local) coordinate system on Rn in whlch the principal part 
appears as (Ax) 2+b2, where 

2 2 '  2 

We remark that the 8 coordinates in Sections I1 and I11 

Thus we can 

A is a real constant n by n matrix 
b is a constant vector 

if and only if [(adrf,q), (adsf,g)] = 0 for O$r,scn. Here 
Ax and b denots the coefficients of -, ~ , . . . , e  . 

be in rational canuriical form and 

3 

3x1 2 n 
In fact, under the assumptlons of the theorem, A can 

Perhaps we can find "geometrically interesting canonical 
forms" for the class of partial differential equations 
under consideration. cd 
V. FUTURE DIRECTIONS. The s coordinates of section I1 and 
111 are generated by solving systems of ordinary differen- z tial equations. For feedback linearizable systems, 
symbolic and numerical methods exist in some cases for con- ;D 
! 1 4 1 ,  the major task b e i n g  t o  find the s coordinates. G .  ;v 
Blankenship et. ai. ,3 t t.hc University of #dryland arc  
developing an expert system 1.0 construct such transforma- r, -1 tions. 
systems seams quite difficult. However, for many physical 
systems the mathematical model is often "near" pure 

P.4 structinq the feedback linearizing transformations [41, * 

The process o f  finding the s cocrdinates fur general 4 

2 
0 
M 
ii 
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feedback form and "close" to being in the s coordinates. 
In this case, a "good" initial guess for the s coordinates 
is easily obtained and an appropriate iteration scheme is 
recommended. Efforts to handle more difficult nonlinear 
systems are presently underway by G. Meyer of the NASA ~ m e s  
Research Center. 

When an approximation method is used for nonlinear 
systems of ordinary differential equations, the ultimate 
goal is to achieve close time responses between the 
original system and the approximating system. 
series expansions mentioned in Section I11 seem ideal. We 
shall develop a symbolic manipulation program to generate 
and compare Volterra series expansions for nonlinear con- 
trol systems and their pure feedback approximations. 

An important numerical method i n  the sngineering and 
mathematical approach to controlled systems of partial 
differential equations is the finite element method. How 
do the geometric hypoellipicity conditions of Section IV 
influence the use of finite elements? Moreover, one often 
does have a system of partiai differential equations to 
model a physical system, but a computer generated finite 
element model. Is it possible to find the desired 
geometric conditions in these finite element models? 

The Volterra 

REFERENCES 
(11 B. Jakubczyk and W. Respondek. On L i n e a r i z a t i o n  of 
C o n t r o l  S y s t e m s ,  Bull. Acad. Polon. Sci., Ser. Sci. Math 
Astronom. Phys., 28 (1980)' 517-522. 
121 L.R. Hunt, R. Su, and G. Meyer, Design for M u l t i - I n p u t  
N o n l i n e a r  S y s t e m s ,  Differential Geometric Control Theory 
Conference, Birkhauser, Boston, R.W. Brockett, R.S. Millman, 
and H.J. Sussmann, Eds., 27 (19633, 268-298. 
[3] L.R. Hunt and R. Su, C n r t r c L  i,? WonLinear T i w e - V a r 3 C z g  
S y s t e m s ,  Proc. 20th IEEE Conf. on Decision and Control, 
San Diego, CA (19811, 558-563. 
[4j C. Meyer and L. Cicoiani. l -LeutCcn nf ,?'on! iriear 
5;Lstsrn i n v a r d s e e  ts A ~ . t r ~ - i + i c  .-? 5 io, .-I .cl  yntlSi!j,i - System 
2oc;csFts zik l  P'ig;.r .:vcLjat<;?:a. AGARDogrdph 251 on Theory 
and Applications o f  Optimal Ccntrol in Aerospace Systems. 
P .  Kent, ed., reprinted by NATO (1981). 
[51 G. Meyer, R. Su, and L.R. Hunt, Application of Non- 
l i n e a r  T r a n s f o r m n t i o z s  t o  Au tomat i :  F l i g h t  Contrzol,  
Automatica, 20 (19841, 103-107. 
[ 6 1  J. Baillieul, L.R. Hunt, George Meyer, and R. Su, 
T u t o r i a l  Workshop on C o n t r o l  i ' c s ign  f o r  NonZinear  S y s t e m s ,  
24th IEEE Conference on Decision and Control, Fort 
Lauderdale, FL (1985). 

l i n e a r  S y s t e m s ,  IEEE Trans. 3." matic Control, 31 (1986), 
670-673. 
[81 A.J. Krener, {?K t h e  b'qu E 0;- ControZ S y s t e m s  ,,?c 
t h e  L i n e a r i z a t i o n  cf S o i ~ l ; . . ~ ~ a ~  . i y s t e m s ,  SIAM J. Control, 11 
(19731, 680-676. 

(71 R. Su and L.R. Hunt, : ~ n o v  KJx~.lrl."~ons f o r  Tori- 

4 t 

I 

1 
i 
I 
I 
i 

I 
- 1  
. i  

i 
i 
! 

[91 
A l g e b r a i c  Approach  t o  N o n l i n e a r  Functional Equatione, IEEE 
Trans. Circuits Syst., 30 (1983), 554-570- 
[lo] L. Hormander, H y p o e l t i p t i c  Second Order D i f f e r e n t i a l  
E q u a t i o n s ,  Acta Math 119 (19671, 147-171. 
[I11 L.P. Rothschild and E.M. Stein, H y p o e l t i p t i c  
D i f f e r e n t i a l  O p e r a t o r s  and N i l p o t e n t  Groups,  Acta Math, 137 
(1976), 247-320. 
[121 R. Su, On t h e  L i n e a r  E q u i v a l e n t s  o f  N o n l i n e a r  S y s t e m s ,  
Sys t ems  and C o n t r o l  L e t t e r s ,  2 (19821, 48-52. 
(131 W. Respondek, Geomet r i c  Methods i n  L i n e a r i z a t i o n  o f  
C o n t r o l  S y s t e m s ,  in "Banach Center Publications" Semester 
on Control Theory, Sept.-Dec. (1980) Warsaw. 
[141 
Computing Canon ica l  Forms, Computers and Mathematics with 
Applications, 10 (19841, 315-326. 

M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, An 

H. Ford, L.R. Hunt, and R. su, A S imple  A l g o r i t h m  f o r  


